
Fizzer: Covering Boolean
Expressions

Martin Jonáš, Jan Strejček, Marek Trtík, Lukáš Urban

Tool Classification

Only a partial information about the
analyzed program is considered.

Next input is produced by
mutating some previous input.

Fizzer is a gray-box fuzzer.

Functionality Overview

• The analysis proceeds in “rounds/iterations” of this form:

Analyzed programInput generator
Next input

Observed data

How do we
get them?

What is in
the data?

Building the Target Executable

Here are the
answers!

Atomic Boolean Expression (ABE)

x < 123456789 %4 = icmp slt i32 %3, 123456789

%5 = sext i32 %3 to i64
%6 = sub i64 %5, 123456789
%7 = sitofp i64 %6 to double

Clang

Unique ID
of ABE

Result of
ABE’s

evaluation

Value of the
branching
function

call void @__sbt_fizzer_process_condition(i32 1, i1 %4,
 double %7, i1 false)

No XOR in the
basic block

C LLVM

ABE!

(double)((int64_t)x – 123456789LL)

Branching function

ABE!

ABE Tree

• ABE tree is a rooted binary tree.
• Nodes are ABEs.

• The root is the first ABE reached during Target’s execution.

• Left outgoing edge – the ABE was evaluated to FALSE.

• Right outgoing edge – the ABE was evaluated to TRUE.

• Paths in the tree correspond to executed paths in the Target.

• Each node also holds:
• One of the inputs for which the execution path reaches the node.

• The value of the branching function obtained for that input.

• Types for parts of the input (where the information is available).

• Input generation is a function defined on the ABE Tree.

	Slide 1: Fizzer: Covering Boolean Expressions
	Slide 2: Tool Classification
	Slide 3: Functionality Overview
	Slide 4: Building the Target Executable
	Slide 5: Atomic Boolean Expression (ABE)
	Slide 6: ABE Tree

