Fizzer: Covering Boolean
Expressions

Martin Jonas, Jan Strejcek, Marek Trtik, Lukas Urban

o F
Nl
$

Tool Classification

Fizzer is a gray-box fuzzer.

/)' \\
Only a partial information about the Next input is produced by

analyzed program is considered. mutating some previous input.

Functionality Overview

* The analysis proceeds in “rounds/iterations” of this form:

Next input

Input generator Analyzed program

Shared
{é}- Server memory @ Target

Observed data

What is in How do we
the data? get them?

Building the Target Executable

Clang

Here are the
answers!

Compiling

—

Fizzer's
static
libraries

Instrumentation
> LLVM

@ Linking
|:> { Clang++} |:>

[@ Target }

Atomic Boolean Expression (ABE)

ABE! Result of
x < 123456789 ‘ %4 = icmp slt i32 %3, 123456789 evaluation
I " %5 =sext i32 %3 to i64 Unique ID
ABE! »< %6 =sub i64 %5, 123456789 of ABE
' _ %7 = sitofp i64 %6 to double ~—

caIIv0|d @ sbt fizzer process condition(i32 1, |1 %4
double %7, il false)

| T~

(double)((int64_t)x —123456789LL) Value of the No XOR in the

Branching function branching basic block
function

ABE Tree

* ABE tree is a rooted binary tree.
* Nodes are ABEs.

 Theroot is the first ABE reached during Target’s execution.
Left outgoing edge — the ABE was evaluated to FALSE.
Right outgoing edge — the ABE was evaluated to TRUE.
Paths in the tree correspond to executed paths in the Target.

Each node also holds:
* One of the inputs for which the execution path reaches the node.
* The value of the branching function obtained for that input.
* Types for parts of the input (where the information is available).

* Input generation is a function defined on the ABE Tree.

	Slide 1: Fizzer: Covering Boolean Expressions
	Slide 2: Tool Classification
	Slide 3: Functionality Overview
	Slide 4: Building the Target Executable
	Slide 5: Atomic Boolean Expression (ABE)
	Slide 6: ABE Tree

