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Tool Classification

Fizzer is a gray-box fuzzer.
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Only a partial information about the Next input is produced by

analyzed program is considered. mutating some previous input.



Functionality Overview

* The analysis proceeds in “rounds/iterations” of this form:

Next input

Input generator Analyzed program

Shared
{é}- Server memory @ Target

Observed data

What is in How do we
the data? get them?




Building the Target Executable
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Atomic Boolean Expression (ABE)
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ABE Tree

* ABE tree is a rooted binary tree.
* Nodes are ABEs.

 Theroot is the first ABE reached during Target’s execution.
Left outgoing edge — the ABE was evaluated to FALSE.
Right outgoing edge — the ABE was evaluated to TRUE.
Paths in the tree correspond to executed paths in the Target.

Each node also holds:
* One of the inputs for which the execution path reaches the node.
* The value of the branching function obtained for that input.
* Types for parts of the input (where the information is available).

* Input generation is a function defined on the ABE Tree.
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