
Static and Dynamic Analysis of a Linux Distribution

Red Hat

Vincent Mihalkovič, Lukáš Zaoral

8th December 2023

Why do we use code analysis at Red Hat?

... to find programming mistakes soon enough – example:

Error: SHELLCHECK_WARNING:
/etc/rc.d/init.d/squid:136:10: warning: Use "${var:?}" to ensure this never expands to /* .
134| RETVAL=$?
135| if [$RETVAL -eq 0] ; then
136|-> rm -rf $SQUID_PIDFILE_DIR/*
137| start
138| else

https://bugzilla.redhat.com/1202858 – [UNRELEASED] restarting
testing build of squid results in deleting all files in hard-drive

Static analysis is required for Common Criteria certification.

1 / 23

https://bugzilla.redhat.com/1202858

Agenda

1 Linux Distribution, Reproducible Builds

2 Static Analysis of a Linux Distribution

3 Dynamic Analysis of a Linux Distribution

4 OpenScanHub

5 Differential ShellCheck

Linux Distribution, Reproducible Builds

What is a Linux Distribution?

operating system (OS)

based on the Linux kernel

a lot of other programs running in user space

usually open source

2 / 23

Linux Distribution, Reproducible Builds

Upstream vs. Downstream

Upstream SW projects – usually independent

Downstream distribution of upstream SW projects

Red Hat uses the RPM package manager

Files on the file system owned by RPM packages.

3 / 23

Linux Distribution, Reproducible Builds

Fedora vs. RHEL

Fedora

new features available early

driven by the community (developers, users, . . .)

RHEL (Red Hat Enterprise Linux)

stability and security of existing deployments

driven by Red Hat (and its customers)

4 / 23

Linux Distribution, Reproducible Builds

Where do RPM packages come from?

Developers maintain source RPM packages (SRPMs).

Binary RPMs can be built from SRPMs using rpmbuild:

rpmbuild --rebuild git-2.39.2-1.fc39.src.rpm

Binary RPMs can be then installed on the system:

sudo dnf install git

5 / 23

Linux Distribution, Reproducible Builds

Reproducible Builds

Local builds are not easily reproducible.

mock – container-based tool for building RPMs:

mock -r fedora-rawhide-x86 64 git-2.43.0-1.fc40.src.rpm

Easy to hook static analyzers into the build process!

Who cares about reproducible builds?
https://reproducible-builds.org/who/projects/

6 / 23

https://reproducible-builds.org/who/projects/

Agenda

1 Linux Distribution, Reproducible Builds

2 Static Analysis of a Linux Distribution

3 Dynamic Analysis of a Linux Distribution

4 OpenScanHub

5 Differential ShellCheck

Static Analysis of a Linux Distribution

Static Analysis of a Linux Distribution

Vast range of software packages, each developed independently and with various
contributors.

Huge number of (potential?) defects in certain projects.

No control over technologies and programming languages.

No control over upstream coding style.

It is impossible for a single person to be familiar with all the code of a large
project.

7 / 23

Static Analysis of a Linux Distribution

Upstream vs. Enterprise

Different approaches to static analysis:

Upstream

Fix as many bugs as possible.

False positive ratio increases over time!

Enterprise

Run differential scans to verify code changes.

Up to 10% of bugs are usually detected as new in an update.

Up to 10% of them are usually confirmed as real by developers.

8 / 23

Static Analysis of a Linux Distribution

Static Analysis of RHEL in Numbers

Analyzed 480 million LoC (Lines of Code) in 3700 packages.

Preliminary scan of all RHEL 9 packages in February 2021.

98.6 % packages scanned successfully.

Approx. 680 000 potential bugs detected in total.

Approx. one potential bug per each 750 LoC.

9 / 23

Static Analysis of a Linux Distribution

Analysis of RPM Packages

Command-line tool to run static analyzers on RPM packages.

One interface, one output format, plug-in API for (static) analyzers.

Fully open-source, available in Fedora and CentOS.

SRPM list of bugscsmock

coverityshellcheckcppcheckclanggcc

10 / 23

Static Analysis of a Linux Distribution

csmock – Output Format

11 / 23

Static Analysis of a Linux Distribution

csmock – Supported Static Analyzers

Tool C C++ C# Java Go JavaScript PHP Python Ruby Shell

gcc ✓ ✓
gcc -fanalyzer ✓
clang --analyze ✓ ✓
cppcheck ✓ ✓
coverity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
gitleaks ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
shellcheck

snyk ✓ ✓ ✓ ✓ ✓ ✓ ✓
unicontrol ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
pylint ✓
bandit ✓
infer ✓ ✓
smatch ✓

Need more?

https://github.com/mre/awesome-static-analysis#user-content-programming-languages-1

12 / 23

https://github.com/mre/awesome-static-analysis#user-content-programming-languages-1

Static Analysis of a Linux Distribution

What is important for developers?

The static analyzers need to:

be fully automatic

provide reasonable amount of incorrect results

provide reproducible and consistent results

be approximately as fast as ordinary compilation of the package

support differential scans – detect added/fixed bugs in an update

13 / 23

Agenda

1 Linux Distribution, Reproducible Builds

2 Static Analysis of a Linux Distribution

3 Dynamic Analysis of a Linux Distribution

4 OpenScanHub

5 Differential ShellCheck

Dynamic Analysis of a Linux Distribution

Dynamic Analysis

Executes code in a modified run-time environment.

Not so easy to automate as static analysis.

Embedded in compilers: Address Sanitizer, Undefined Behaviour Sanitizer, . . .

Standalone tools: Valgrind, strace, . . .

Good to have some test-suite to begin with.

14 / 23

Dynamic Analysis of a Linux Distribution

Dynamic Analysis of RPM Packages

Requires an embedded test suite in the SRPM.

csmock has experimental support for GCC sanitizers, Valgrind and strace:

SRPM list of bugscsmock

stracevalgrindcppcheckclanggcc

15 / 23

Dynamic Analysis of a Linux Distribution

Dynamic Analysis of RPM Packages – Simple Approach

Dynamic analyzers usually support tracing of child processes.

Let’s combine the tools together:

valgrind --trace-children=yes rpmbuild --rebuild *.src.rpm

strace --follow-forks rpmbuild --rebuild *.src.rpm

But did we want to dynamically analyze rpmbuild, bash, make, etc.?

This makes the analysis extremely slow.

We get reports unrelated to *.src.rpm.

16 / 23

Dynamic Analysis of a Linux Distribution

Dynamic Analysis of RPM Packages – Better Approach

Build binaries that will launch the dynamic
analyzer for themselves.

Only binaries produced by rpmbuild will be
executed through Valgrind.

./program

our
interpreter

valgrind

ELF
interpreter

main()

17 / 23

Dynamic Analysis of a Linux Distribution

Program Interpreter

Program interpreter specified by shebang:
$ head -1 /usr/bin/dnf

#!/usr/bin/python3

$ /usr/bin/dnf [...] −→ /usr/bin/python3 /usr/bin/dnf [...]

Program interpreter specified by ELF header:
$ file /sbin/logrotate

/sbin/logrotate: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV),

dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, BuildID[sha1]=...

ELF interpreter can be set to a custom value when linking the binary:
$ file ./logrotate

./logrotate: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV),

dynamically linked, interpreter /usr/bin/csexec-loader, BuildID[sha1]=...

18 / 23

Dynamic Analysis of a Linux Distribution

Wrapper of Dynamic Linker – Implementation

We can use a compiler wrapper to instrument the build of an RPM package.

csexec works as a wrapper of the system dynamic linker:
https://github.com/csutils/cswrap/wiki/csexec

$CSEXEC WRAP CMD can specify a dynamic analyzer to use.

If the variable is unset, the binaries are executed natively.

$ export PATH="$(cswrap --print-path-to-wrap):$PATH"
$ export CSWRAP_ADD_CFLAGS=-Wl,--dynamic-linker,/usr/bin/csexec-loader

$ export CSEXEC_WRAP_CMD=valgrind

$ rpmbuild --rebuild *.src.rpm

csexec runs the system dynamic linker explicitly (to eliminate self-loop):
./logrotate [...] −→ valgrind /lib64/ld-linux-x86-64.so.2 ./logrotate [...]

19 / 23

https://github.com/csutils/cswrap/wiki/csexec

Dynamic Analysis of a Linux Distribution

Wrapper of Dynamic Linker – Evaluation

Positives:

No completely unrelated bug reports.

Negligible impact on performance, excluding the time spent on analysis.

Minimal interference with commonly used testing frameworks.

Able to successfully run upstream test-suite of GNU Coreutils (without Valgrind).

Negatives:
Some tests fail if we wrap them by Valgrind though:

a test that verifies the count of open file descriptors,

a test that intentionally sets non-existing $TMPDIR,

. . .

20 / 23

Agenda

1 Linux Distribution, Reproducible Builds

2 Static Analysis of a Linux Distribution

3 Dynamic Analysis of a Linux Distribution

4 OpenScanHub

5 Differential ShellCheck

OpenScanHub

OpenScanHub

OpenScanHub is an open-source service for on-demand static and dynamic
analysis.

Uses csmock internally.

Analysis of RPM packages and source code tarballs.

Key Features

Support for differential scans.

Easily extensible through csmock plugins.

Reports from various analyzers are available in a single place.

Available at https://openscanhub.dev.

21 / 23

https://openscanhub.dev

OpenScanHub

Who should use it?

Any developer can use it.

It is used inside Red Hat to scan RHEL, OpenShift, OpenStack and other
projects.

The goal is to scan all products shipped to our customers.

We are currently in the process of building a public deployment of this service.

22 / 23

Agenda

1 Linux Distribution, Reproducible Builds

2 Static Analysis of a Linux Distribution

3 Dynamic Analysis of a Linux Distribution

4 OpenScanHub

5 Differential ShellCheck

Differential ShellCheck

Differential ShellCheck

Differential ShellCheck performs differential analysis on shell scripts in your
GitHub repository.

Accessible as a GitHub Action.

Automatically checks for potential coding issues introduced by pull requests.

Key features:

Auto-detection of shell scripts.

Statistics about fixed and added defects and their severity.

Used by: flatpak, systemd, strace, util-linux, . . .

Available at https://github.com/marketplace/actions/differential-shellcheck.

23 / 23

https://github.com/marketplace/actions/differential-shellcheck

Q&A

Questions?

	Linux Distribution, Reproducible Builds
	Static Analysis of a Linux Distribution
	Dynamic Analysis of a Linux Distribution
	OpenScanHub
	Differential ShellCheck

