
Vesal Vojdani, CHESS Industry Day
 with Karoliine Holter, Simmo Saan (Uni Tartu)
 and Julian Erhard, Sarah Tilscher, Michael Schwarz, Helmut Seidl (TU Munich)

Goblint & GobPie
Towards Usable Data Race Verification

Multiple Access data race
Two threads simultaneously access same memory location…Introduction Races in the Heap Region Analysis Refined Invariants Conclusions

Simple Example (no race)

T1 : lock(&l1);

v = v+ 1;

unlock(&l1);

T2 : lock(&l1);

v = v+ 1;

unlock(&l1);

List of accesses:
hv, {l1}, write, file.c : 2i
hv, {l1}, write, file.c : 5i

v is protected by {l1}.

Introduction Races in the Heap Region Analysis Refined Invariants Conclusions

Simple Example (race!)

T1 : lock(&l1);

v = v+ 1;

unlock(&l1);

T2 : lock(&l2);

v = v+ 1;

unlock(&l2);

List of accesses:
hv, {l1}, write, file.c : 2i
hv, {l2}, write, file.c : 5i

No common lock!

Goblint: Race Detection World Champion
Potentially somewhat useful as well …

Why just “somewhat useful”

• When running our SV-COMP
configuration on top Github repos.

• Inconclusive results in 2h.

• One clearly needs precision
adjustment…

• And targeted abstractions!

Strength: Locks
Introduction Races in the Heap Region Analysis Refined Invariants Conclusions

What do we need?

Infer the locked addresses
locks[i]

Information about pointers
pos 2 slot[i]

Disjointness information
slot[i] \ slot[j] = ;

Introduction Races in the Heap Region Analysis Refined Invariants Conclusions

Medium-Grained Locking

locks slots pos

Non-Locking Concurrency

• Thread-creation and joining

• Data segmentation

• When the number of threads is
unbounded, this is hard…

• These “real-world” race
challenges were submitted to
SV-COMP!

• https://github.com/goblint/bench/blob/master/
concrat/race-challenges/README.md

Failings… int *datas;

void *thread(void *arg) {
 int i = (int)arg;
 datas[i] = …; // No locking needed
 return NULL;
}

int main() {
 int threads_total = __VERIFIER_nondet_int();

 pthread_t *tids = malloc(threads_total * sizeof(…));
 datas = malloc(threads_total * sizeof(int));

 // create threads
 for (int i = 0; i < threads_total; i++) {
 pthread_create(&tids[i], NULL, &thread, (void*)i);
 }

 // join threads
 for (int i = 0; i < threads_total; i++) {
 pthread_join(tids[i], NULL);
 }

 // compute with data — no locking needed

}

https://github.com/goblint/bench/blob/master/concrat/race-challenges/README.md
https://github.com/goblint/bench/blob/master/concrat/race-challenges/README.md

Towards usable analysis
Feedback from one industrial partner…

• False alarm can still be inisightful and useful part of code review, but…

• “Why do you produce so many warnings about the same issue?”

• We (and perhaps others too) have not paid that much attention to explaining
verification outcomes.

• Heuristic analyzers are much nicer and give actionable feedback.

• Incremental abstract
interpretation

• GUI integration via MagPie
Bridge

• Server mode for Goblint

• Astronomical speedup 
(for superficial analysis)

• Modest speedup for SV-COMP
quality analyses

Analyzer IDE integration Interactive Verifier Open Problems Examples

A dedicated server-mode for Goblint

Previously, the analyzer had to be restarted for every analysis.
! Now, keep it running and request analyses when needed.

Figure 8: Simplified sequence diagram.

Karoliine Holter and Sarah Tilscher University of Tartu and Technical University of Munich

GobPie: An IDE Integration for Goblint Using MagpieBridge 11/21

Interactive analysis

More familiar experince of analysis results… (??)

26

Joonis 12. Abstraktse siluri poolt kuvatud muutujate (vasakul üleval)

ning avaldiste (vasakul all) väärtused koos silutava programmi lähtekoodiga (paremal).

Abstract Debugging

