Goblint & GobPie

Towards Usable Data Race Verification

Vesal Vojdani, CHESS Industry Day
with Karoliine Holter, Simmo Saan (Uni Tartu)
and Julian Erhard, Sarah Tilscher, Michael Schwarz, Helmut Seidl (TU Munich)

Multiple Access data race

Two threads simultaneously access same memory location...

T;: lock(&ly); T : lock(&ly):
v=v+1;

@ List of accesses: v=v+1, @ List of accesses:
unlock(&1;); A1y}, write, file.c : 2 unlock(&l;); (v, {11}, write, file.c : 2

)
Alit write, file.c: 5 (v, {lo}, write, file.c : 5)
. lock(&ly); . lock(&ly);

v=v+1: @ v is protected by {1;}. v=v4+1 @ No common lock!
unlock(&1ly); unlock(&1,):

Goblint: Race Detection World Champion

Potentially somewhat useful as well ...

Targeted Static Analysis for OCaml C Stubs: Eliminating gremlins from the code

Track

When

Abstract

OCaml 2023
Sat 9 Sep 2023 10:07 - 10:30 at Grand Crescent - Session 1 Chair(s): Benoit Montagu

Migration to OCaml 5 requires updating a lot of C bindings due to the removal of naked pointer support. Writing
OCaml user-defined primitives in C is a necessity, but is unsafe and error-prone. It does not benefit from either
OCaml’s or C’s type checking, and existing C static analysers are not aware of the OCaml GC safety rules, and
cannot infer them from existing macros alone. The alternative is automatically generating C stubs, which
requires correctly managing value lifetimes. Having a static analyser for OCaml to C interfaces is useful outside
the OCaml 5 porting effort too.

After some motivating examples of real bugs in C bindings a static analyser is presented that finds these known
classes of bugs. The tool works on the OCaml abstract parse and typed trees, and generates a header file and a
caller model. Together with a simplified model of the OCaml runtime this is used as input to a static analysis
framework, Goblint. An analysis is developed that tracks dereferences of OCaml values, and together with the
existing framework reports incorrect dereferences. An example is shown how to extend the analysis to cover
more safety properties.

The tools and runtime models are generic and could be reused with other static analysis tools.

Goblint (1304)
Deagle (1211)
Dartagnan (768)
UJAutomizer (756)
UGemCutter (732)
UTaipan (612)
CPAchecker (400)
Locksmith (226)
Theta (205)

10. ...

S

REMOTE

O O N O U A WN R

Edwin Torok

XenServer, Cloud Software Group

Why just “somewhat useful”

 When running our SV-COMP
configuration on top Github repos.

 |nconclusive results in 2h.

* One clearly needs precision
adjustment...

* And targeted abstractions!

Goblint 2023-11-10 16:13:46 UTC goblint.svcomp.Concrat

status

Show all v

TIMEOUT

TIMEOUT

TIMEOUT

TIMEOUT

true

EXCEPTION (Stack overflow)
EXCEPTION (Failure)

EXCEPTION (Stack overflow)
TIMEOUT

EXCEPTION (Stack overflow)
EXCEPTION (Stack overflow)
EXCEPTION (Stack overflow)
SEGMENTATION FAULT

true

cputime

(s)

7200
16.3
7200
48.6
3480
7200
7200
.186
90.1
173
2320
1120
7200
939
34.6
1120
2320
4.86

walltime

(s)

7200
16.3
7200
48.6
3480
7200
7200
187
90.1
173
2320
1120
7200
939
34.6
1120
2320
4.86

memory

(MB)

13800
49.7
14200
360
5730
9950
979
26.6
384
30.9
11400
3160
21600
3240
191
7660
3880
42.4

safe

50

29

118

2

233

83

vulnerable

unsafe

32

18

Strength: Locks

@ Infer the locked addresses
locks|i)

@ Information about pointers o
pos € slot|i

@ Disjointness information
slot[i] Nslot[j] =0 Locks

Failings...

Non-Locking Concurrency

Thread-creation and joining
Data segmentation

When the number of threads Is
unbounded, this is hard...

These “real-world” race

challenges were submitted to
SV-COMP!

https://qgithub.com/goblint/bench/blob/master/
concrat/race-challenges/README.md

int *datas:

void xthread(void *arg) A{
int i = (int)arg;
datas[i] = ..; // No locking needed
return NULL;

}

int main() {

int threads_total = VERIFIER nondet int();

pthread_t *tids = malloc(threads_total *x sizeof(..));
datas = malloc(threads total x sizeof(int));

// create threads

for (int 1 = 0; i < threads_total; i++) {
pthread create(&tids[i], NULL, &thread,

I3

// jolin threads

for (int i = 0; 1 < threads_total; i++) {
pthread_join(tids[i], NULL);

}

// compute with data — no locking needed

(voidx)i);

https://github.com/goblint/bench/blob/master/concrat/race-challenges/README.md
https://github.com/goblint/bench/blob/master/concrat/race-challenges/README.md

Towards usable analysis

Feedback from one industrial partner...

* False alarm can still be inisightful and useful part of code review, but...
 “Why do you produce so many warnings about the same issue?”

 We (and perhaps others too) have not paid that much attention to explaining
verification outcomes.

* Heuristic analyzers are much nicer and give actionable feedback.

MagpieBridge server GobPie Goblint server

Interactive analysis

Start
(1) >
loop [Analysis]
o File saved
>
* Incremental abstract opt [Previous analyss
interpretation e
o Abort analysis
. . . . >
* GUI integration via MagPie Analysis aborted
Bridge R ——— o
Run analysis
: (5 >
) ECTTEE TP PEr PP L PEPTRPEEPEPLE (6
. Request resul
e Astronomical speedup o =
(for superficial analysis) e Results o

* Modest speedup for SV-COMP e ©
quality analyses

MannieRridne carvar (GGnhPia (Anhlint carver

Abstract Debugging

More familiar experince of analysis results... (??)

RUN AND DEBUG D> C (GobPie Abstract Debugger) v | €83 - 2> v T DA O
v VARIABLES C variables_example.c > D main()
Vv Local 2
a: [Unknown int([-31,31]), [©,18], Z] 3 struct s {
b: [79, [79,79], 79] 4 int n;
_ B 5 int m[{3];

v c: {m: .., n: [Unknown int([-31,31]), [5,131], 5+72]} 6 }s
v m: {trivial arrays: [Not {©@}([©0,7]), [79,81], =], length: [3, [.. v; ’

trivial arrays: [Not {0}([@,7]), [79,81], Z] W ara A
int main() {

length: [3, [3,3], 3] 8
n: [Unknown int([-31,31]), [5,131], 5+77] 9 int a = rand() % 19;
10 int b = 79;
> Global
11 struct s ¢ = {
e 12 7 ¥ a + 5,
13 {b, b+ 1, b + 2}
v WATCH
. ~ 14 '
c.m[2]: [Not {@}([0,7]), [79,81], Z] ® 15 Dreturn ©:
(c.n * 25 + 11) % 100: [Unknown int([-31,31]), [11,86], 11+257] 16 }

c.n > 0: [1, [1,1], 1]

