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Multiple Access data race
Two threads simultaneously access same memory location…Introduction Races in the Heap Region Analysis Refined Invariants Conclusions

Simple Example (no race)

T1 : lock(&l1);

v = v+ 1;

unlock(&l1);

T2 : lock(&l1);

v = v+ 1;

unlock(&l1);

List of accesses:
hv, {l1}, write, file.c : 2i
hv, {l1}, write, file.c : 5i

v is protected by {l1}.
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Simple Example (race!)

T1 : lock(&l1);

v = v+ 1;

unlock(&l1);

T2 : lock(&l2);

v = v+ 1;

unlock(&l2);

List of accesses:
hv, {l1}, write, file.c : 2i
hv, {l2}, write, file.c : 5i

No common lock!



Goblint: Race Detection World Champion
Potentially somewhat useful as well …



Why just “somewhat useful”

• When running our SV-COMP 
configuration on top Github repos.


• Inconclusive results in 2h.


• One clearly needs precision 
adjustment…


• And targeted abstractions!



Strength: Locks
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What do we need?

Infer the locked addresses
locks[i]

Information about pointers
pos 2 slot[i]

Disjointness information
slot[i] \ slot[j] = ;
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Medium-Grained Locking

locks slots pos



Non-Locking Concurrency

• Thread-creation and joining 


• Data segmentation


• When the number of threads is 
unbounded, this is hard…


• These “real-world” race 
challenges were submitted to 
SV-COMP!


• https://github.com/goblint/bench/blob/master/
concrat/race-challenges/README.md

Failings… int *datas; 

void *thread(void *arg) { 
  int i = (int)arg; 
  datas[i] = …; // No locking needed 
  return NULL; 
} 

int main() { 
  int threads_total = __VERIFIER_nondet_int(); 

  pthread_t *tids = malloc(threads_total * sizeof(…)); 
  datas = malloc(threads_total * sizeof(int)); 

  // create threads 
  for (int i = 0; i < threads_total; i++) { 
    pthread_create(&tids[i], NULL, &thread, (void*)i); 
  } 

  // join threads 
  for (int i = 0; i < threads_total; i++) { 
    pthread_join(tids[i], NULL); 
  } 

  // compute with data — no locking needed 

}

https://github.com/goblint/bench/blob/master/concrat/race-challenges/README.md
https://github.com/goblint/bench/blob/master/concrat/race-challenges/README.md


Towards usable analysis
Feedback from one industrial partner…

• False alarm can still be inisightful and useful part of code review, but…


• “Why do you produce so many warnings about the same issue?”


• We (and perhaps others too) have not paid that much attention to explaining 
verification outcomes. 


• Heuristic analyzers are much nicer and give actionable feedback.



• Incremental abstract 
interpretation


• GUI integration via MagPie 
Bridge


• Server mode for Goblint


• Astronomical speedup 
(for superficial analysis)


• Modest speedup for SV-COMP 
quality analyses

Analyzer IDE integration Interactive Verifier Open Problems Examples

A dedicated server-mode for Goblint

Previously, the analyzer had to be restarted for every analysis.
! Now, keep it running and request analyses when needed.

Figure 8: Simplified sequence diagram.
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Interactive analysis



More familiar experince of analysis results… (??) 
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Joonis 12. Abstraktse siluri poolt kuvatud muutujate (vasakul üleval)  

ning avaldiste (vasakul all) väärtused koos silutava programmi lähtekoodiga (paremal). 

Abstract Debugging


