Fyzikální intuice v hlubokých neuronových sítích

Martin Pecka

ČVUT v Praze, Fakulta elektrotechnická

15. listopadu 2024

Skupina VRAS

Vision for Robots and Autonomous Systems

prof. Tomáš Svoboda

Katedra kybernetiky

FEL ČVUT

VRAS: Naši roboti

VRAS: DARPA SubT Challenge: Motivace

VRAS: DARPA SubT Challenge: Motivace

DARPA SubT challenge 2018-2021 Sub-Domains Tunnel Systems • Urban Underground • Cave Networks explore **Competition Tracks** find Systems Track • Virtual Track **Revolutionary Vision**

Urban Environment

 Create breakthrough technologies and capabilities for underground operations

Learn More at www.darpa.mil

Cave Environment

Tunnel Environment

VRAS: DARPA SubT Challenge: Urban Circuit (2. kolo)

T. Rouček et al.: DARPA Subterranean Challenge: Multi-Robotic Exploration of Underground Environments, MESAS 2019

Martin Pecka (ČVUT FEL)

VRAS: DARPA SubT Challenge: Finále

T. Rouček et al.: System for Multi-Robotic Exploration of Underground Environments CTU-CRAS-NORLAB in the DARPA Subterranean Challenge, Field Robotics 2022

Martin Pecka (ČVUT FEL)

VRAS: DARPA SubT Challenge: Finále

M. Petrlík et al.: UAVs Beneath the Surface: Cooperative Autonomy for Subterranean Search and Rescue in DARPA SubT, IEEE T. on Field Robotics 2024

Martin Pecka (ČVUT FEL)

VRAS: Pohyb v náročném terénu

VRAS: Pohyb v náročném terénu: Aktivní odhad mapy

Sparse measurements Reconstructed map Ground truth

K. Zimmermann et al.: Learning for Active 3D Mapping, ICCV 2017

Martin Pecka (ČVUT FEL)

VRAS: Pohyb v náročném terénu: Aktivní odhad mapy

M. Pecka et al.: Controlling Robot Morphology from Incomplete Measurements, IEEE TIE 2017

Martin Pecka (ČVUT FEL)

VRAS: Pohyb v náročném terénu: Aktivní segmentace

T. Petříček et al.: Simultaneous Exploration and Segmentation for Search and Rescue, JFR 2019

Martin Pecka (ČVUT FEL)

Fyzikální intuice v DNN

12/1

VRAS: Průmyslové nasazení: Průzkum plynového potrubí

Technologický demonstrátor pro GasNet s.r.o.

Martin Pecka (ČVUT FEL)

VRAS: Průmyslové nasazení: Průzkum plynového potrubí

Technologický demonstrátor pro GasNet s.r.o.

Martin Pecka (ČVUT FEL)

VRAS: Průmyslové nasazení: Průzkum plynového potrubí

Technologický demonstrátor pro GasNet s.r.o.

Martin Pecka (ČVUT FEL)

VRAS: Simulace

ABSOLEM V3

By OpenRobotics

Simulační modely pro Gazebo

Martin Pecka (ČVUT FEL)

Fyzikální intuice v DNN

15. listopadu 2024 16 / 1

VRAS: Simulace

ABSOLEM V3

By OpenRobotics

Simulační modely pro Gazebo

Martin Pecka (ČVUT FEL)

Fyzikální intuice v DNN

15. listopadu 2024 16 / 1

VRAS: Simulace

M. Pecka et al.: Fast simulation of vehicles with non-deformable tracks, IROS 2017

Martin Pecka (ČVUT FEL)

VRAS: Aktuální projekty: XSCAVE

EU Horizon projekt s Tampere U (FI), Aalto U (FI), Umeå U (SE), FZI (DE), Toshiba Europe (UK) Algoryx Simulation (SE)

Martin Pecka (ČVUT FEL)

VRAS: Aktuální projekty: Kolibriq

Projekt s Lockheed Martin a VZLÚ Praha

Martin Pecka (ČVUT FEL)

PINN

Physics-Informed Neural Network

PINN: Motivace

Cíle:

- Spolehlivá navigace v nestrukturovaném venkovním prostředí
- Odhad chování robota na komplexním terénu jen z palubních senzorů
- Model použitelný pro mnoho různých úloh

Goal: robot-terrain model

camera image

Dva hlavní směry:

- White-box modely
- Black-box modely

Martin Pecka (ČVUT FEL)

V. Salansky et al.: Pose Consistency KKT-Loss for Weakly-supervised Learning of Robot-Terrain Interaction Model, IEEE RA-L 2021

PINN: Black-box modely

J. Malik et al.: Learning Visual Locomotion with Cross-Modal Supervision, ICRA 2023

PINN

Střední cesta

Dva Tři hlavní směry:

- White-box modely
- Black-box modely
- Grey-box modely (PINN)

Křivka je definována diferenciální rovnicí a počátečními podmínkami:

-

$$a = -\mu ||v||v - g$$

 $\mu = 0.03; \vec{s_0} = (0,0); \vec{v_0} = (200, 200)$

 $|| \rightarrow || \rightarrow$

Neexistuje closed-form řešení pro výpočet $\vec{s_t}$, je nutné použít numerickou integraci.

To zvládne neuronka!

PINN: Příklad: Balistická křivka: Black-box

$$\log s = \|\hat{ec{s}} - ec{s_{train}}\|^2$$

PINN: Příklad: Balistická křivka: Black-box

$$loss = \|\hat{\vec{s}} - \vec{s_{train}}\|^2 + \sum \|\vec{w}\|^2$$

PINN: Příklad: Balistická křivka: Grey-box

loss =
$$\|\hat{\vec{s}} - \vec{s_{train}}\|^2 + \sum \|\vec{a} - (-\mu\|\vec{v}\|\vec{v} - \vec{g})\|^2$$

PINN: Grey-box modely

R. Agishev et al.: MonoForce: Self-supervised Learning of Physics-aware Model for Predicting Robot-terrain Interaction, IROS 2024

Martin Pecka (ČVUT FEL)

Architecture detail Substantial geometrical + physical priors

Martin Pecka (ČVUT FEL)

R. Agishev et al.: MonoForce: Self-supervised Learning of Physics-aware Model for Predicting Robot-terrain Interaction, IROS 2024

Architecture detail Substantial **geometrical** + **physical** priors

Martin Pecka (ČVUT FEL)

R. Agishev et al.: MonoForce: Self-supervised Learning of Physics-aware Model for Predicting Robot-terrain Interaction, IROS 2024

What do we offer to robotics community?

https://github.com/ctu-vras/monoforce

R. Agishev et al.: MonoForce: Self-supervised Learning of Physics-aware Model for Predicting Robot-terrain Interaction, IROS 2024

Martin Pecka (ČVUT FEL)

PINN: MonoForce

R. Agishev et al.: MonoForce: Self-supervised Learning of Physics-aware Model for Predicting Robot-terrain Interaction, IROS 2024

Martin Pecka (ČVUT FEL)

PINN: MonoForce

R. Agishev et al.: MonoForce: Self-supervised Learning of Physics-aware Model for Predicting Robot-terrain Interaction, IROS 2024

Martin Pecka (ČVUT FEL)

PINN: MonoForce

R. Agishev et al.: MonoForce: Self-supervised Learning of Physics-aware Model for Predicting Robot-terrain Interaction, IROS 2024

Martin Pecka (ČVUT FEL)

ROUGH Dataset

Martin Pecka (ČVUT FEL)

Martin Pecka (ČVUT FEL)

Martin Pecka (ČVUT FEL)

Martin Pecka (ČVUT FEL)

Martin Pecka (ČVUT FEL)

15. listopadu 2024 41 / 1