Speaker Recognition: Challenges and Pitfalls in the Era of Generative AI

Oldřich Plchot

- Brno University of Technology
- Faculty of Information Technology, Speech@FIT, Czechia

PROTECT 2024, November 15th, FI MUNI, Brno, Czechia

Security and defense

Forensic, link analysis, Looking for suspect in quantity of audio Waiting online for suspect

Access Control

Physical facilities Computer networks & websites

Transaction Authentication

Telephone banking Remote purchases

Speech Data Management

Voice mail browsing Search in audio archives

Personalization

Voice-web/device customization Intelligent answering machine

Speech processing, use of speaker representations

FIT

Speaker verification approach via embeddings

- Given a pair of recordings (trial), decide whether these are recordings of the same speaker or two different speakers. .. Comparing embeddings (i-vectors, x-vectors)
- Via probabilistic backends answering the same/different speaker hypothesis or directly via cosine distance

Speaker verification approach via embeddings

- Given a pair of recordings (trial), decide whether these are recordings of the same speaker or two different speakers. .. Comparing embeddings (i-vectors, x-vectors)
- Via probabilistic backends answering the same/different speaker hypothesis or directly via cosine distance

Short historical excursion and current SOTA

Unsupervised approach (i-vectors)

- I T FIT
- Until recently (2010 2017), models for speaker representations did not require a labelled training set.
- i-vectors [1] do not require speaker labels (assuming a single speaker in a recording).

[1] Dehak, N., Kenny, et al. "Front-end factor analysis for speaker verification". IEEE Trans. on Audio, Speech, and Language Processing, 2010.

Simplified PLDA model

- I T FIT
- Labelled training data were required only for the probabilistic "backend" (typically PLDA).
- This was one of a big advantages of i-vectors over its predecessor (Joint Factor Analysis).

The verification score is a log likelihood ratio of the utterances being generated jointly from the same speaker or independently from different speakers

$$s = \log \frac{l\left(\mathfrak{X}_{e_1} \dots \mathfrak{X}_{e_n}, \mathfrak{X}_{t_1} \dots \mathfrak{X}_{t_m} | H_s\right)}{l\left(\mathfrak{X}_{e_1} \dots \mathfrak{X}_{e_n} | H_s\right) l\left(\mathfrak{X}_{t_1} \dots \mathfrak{X}_{t_m} | H_s\right)}$$

Speaker-discriminative DNNs, x-vectors

Peddinti, V., Povey, D., Khudanpur, S., **"A time delay neural network architecture for efficient modeling of long temporal** contexts" Proc. Interspeech 2015 Snyder, D., Garcia-Romero, D., Povey D., Khudanpur S. **"Deep Neural Network Embeddings for Text-Independent Speaker** Verification", Interspeech 2017

Longitudinal analysis

- Both SITW and Voices are 16K
- NIST (8Khz, tel.) is out-of-domain
- Voxceleb is in-domain (YouTube)
- 2000 GMM-UBM
- 2006 GMM-EC
- 2008 JFA
- 2010 iVectors (generative)
- 2017 x-vectors (discriminative)
- Effect of in- vs out-domain data
- 8K vs 16K

Pavel Matějka, et al., **"13 years of speaker recognition research at BUT, with longitudinal** *analysis of NIST SRE"*, Computer Speech & Language, vol. 63, 2020

Attention-based SV backend on top of SSL models

- Utilize large readily available pre-trained models (WavLM, HuBERT, Wav2Vec2.0...)
- Fast fine-tuning for target domain
- Simple backend with multihead attention (64 heads).
- Each head models an acoustic area via a trainable query

vector

Peng, Junyi, et al. "An attention-based backend allowing efficient fine-tuning of transformer models for speaker verification." arXiv preprint arXiv:2210.01273 (2022)., SLT 2022

• Not enough labelled data

- Utilize pre-training paradigm that leverages vast amount of unlabeled data (or download the model)
- Pre-trained model can be easily fine-tuned for target application (domain)
- In the end, less labeled data are needed w.r.t. CNN or RNN-based models

Plenty of labelled data

- Train large CNN-based supervised embedding extractors
- Obtain SOTA results, but perhaps lose some robustness

Impact of advanced speech synthesis on SV

Power of speech synthesis and implications for SRE

- Current Zero-shot speech synthesis systems are getting better rapidly
- Free to use SW packages are popping up on the internet (just one example here)
 - **XTTS-v2**, based on Coqui, one of the most downloaded on Hugging Face
 - Voice cloning with minimal input (up to 10s enrollment speech)
 - Multi-language support, Emotion style transfer
 - Low-latency performance (150ms)
- Can be used for quick model adaptation for target speaker or sadly also for effective attacks against SV systems

Figure 1: ASV EERs for the common ASV system and evaluation data. Results are pooled over the set of codec conditions.

- Unprotected systems are very vulnerable to various kind of attacks
- Prospects a SV system for online verification are diminishing
- For high risk access control, SV should be combined with other biometrics and with anti-spoofing system

Wang, X., Delgado, H., Tak, H., Jung, J.-w., Shim, H.-j., Todisco, M., Kukanov, I., Liu, X., Sahidullah, M., Kinnunen, T.H., Evans, N., Lee, K.A., Yamagishi, J. (2024) ASVspoof 5: crowdsourced speech data, deepfakes, and adversarial attacks at scale. Proc. The Automatic Speaker Verification Spoofing Countermeasures Workshop (ASVspoof 2024)

Combining spoofing detection and SV system

Open condition										
	#	ID	min a-DCF	min t-DCF	t-EER	#	ID	min a-DCF	min t-DCF	t-EER
• ▲	1	T45	0.0756	-	-	7	-	0.1797	0.5430	8.39
• 🔺	2	T39	0.1156	0.4584	4.32	8	-	0.3896	-	-
• 🔺	3	T36	0.1203	0.4291	4.54	9	-	0.4581	-	-
• 🔺	4	T06	0.1295	0.4372	5.43	$\circ \bigtriangleup 10$	REF	0.6869	-	-
0	5	T29	0.1410	0.4690	5.48	11	-	0.9134	-	-
•▲	6	T23	0.1492	0.4075	4.63					

- Well prepared attacker is likely to succeed if a target is a particular VIP (especially for public figures)
- Spoofing detection is always one step behind in the adversarial game, but it can keep acceptable performance under attack assumption (~0.7 DCF -> ~0.1 DCF in ASVSpoof 2024)
- Continuous updating of detection system is necessary

- Speaker recognition is still alive, especially for law-enforcement, and is progressing to enable operating in more challenging domains
- For Access control systems, the problem of deep fakes is real and only **getting worse**
- Deepfake detection is a process of **continuous updating**, similar to anti-virus SW
- Technology behind extracting speaker information has multiple uses -> personalisation, indexing and data mining

Thank You