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| Traditional Speaker Recognition Applications




| Speech processing, use of speaker representations I T(FIT
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| Speaker verification approach via embeddings I TIFIT

— Given a pair of recordings (trial), decide whether these
are recordings of the same speaker or two different
speakers. .. Comparing embeddings (i-vectors,
X-vectors)

— Via probabilistic backends answering the
same/different speaker hypothesis or directly via
cosine distance
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Short historical excursion
and current SOTA




| Unsupervised approach (i-vectors) T FIT|

e Until recently (2010 - 2017), models for speaker representations did not require a labelled training set.

e i-vectors [1] do not require speaker labels (assuming a single speaker in a recording).
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[1] Dehak, N., Kenny, et al. “Front-end factor analysis for speaker verification”. IEEE Trans. on Audio, Speech, and Language Processing, 2010.



| Simplified PLDA model

| K

e Labelled training data were required only for the probabilistic “backend” (typically PLDA).

e This was one of a big advantages of i-vectors over its predecessor (Joint Factor Analysis).

The verification score is a log likelihood ratio of the
utterances being generated jointly from the same
speaker or independently from different speakers
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| Speaker-discriminative DNNs, x-vectors T FIT|
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Peddinti, V., Povey, D., Khudanpur, S., “A time delay neural network architecture for efficient modeling of long temporal
contexts” Proc. Interspeech 2015

Snyder, D., Garcia-Romero, D., Povey D., Khudanpur S. “Deep Neural Network Embeddings for Text-Independent Speaker
Verification” , Interspeech 2017



| Longitudinal analysis T |FIT

Effect of in- vs out-domain data
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Pavel Matéjka, et al., “13 years of speaker recognition research at BUT, with longitudinal
analysis of NIST SRE”, Computer Speech & Language, vol. 63, 2020

| ©




| Attention-based SV backend on top of SSL models I TIFIT

e Utilize large readily available
-------------------------------------------------------- pre-trained models (WavLM,

Pretrained Model
HuBERT, Wav2Vec2.0...)
® Fast fine-tuning for target
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e Simple backend with multihead
attention (64 heads).
e Each head models an acoustic
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Peng, Junyi, et al. "An attention-based backend allowing efficient fine-tuning of transformer models for speaker verification." arXiv preprint arXiv:2210.01273 (2022)., SLT 2022



| Current trends T |FIT

e Not enough labelled data
e Utilize pre-training paradigm that leverages vast amount of
unlabeled data (or download the model)
e Pre-trained model can be easily fine-tuned for target
application (domain)
e |nthe end, less labeled data are needed w.r.t. CNN or
RNN-based models
e Plenty of labelled data
e Train large CNN-based supervised embedding extractors
e Obtain SOTA results, but perhaps lose some robustness
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Impact of advanced
speech synthesis on SV




| Power of speech synthesis and implications for SRE

- Current Zero-shot speech synthesis systems are getting better rapidly

- Free to use SW packages are popping up on the internet (just one example here)
- XTTS-v2, based on Coqui, one of the most downloaded on Hugging Face

- Voice cloning with minimal input (up to 10s enrollment speech)

- Multi-language support, Emotion style transfer

- Low-latency performance (150ms)

| K

- Can be used for quick model adaptation for target speaker or sadly also for effective attacks

against SV systems
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I Attacks against unprotected system - ASVSpoof 2024
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Figure 1: ASV EERs for the common ASV system and evalua-
tion data. Results are pooled over the set of codec conditions.

Unprotected systems
are very vulnerable to
various kind of attacks
Prospects a SV system
for online verification
are diminishing

For high risk access
control, SV should be
combined with other
biometrics and with
anti-spoofing system

Wang, X., Delgado, H., Tak, H., Jung, J.-w., Shim, H.-j., Todisco, M., Kukanov, I., Liu, X., Sahidullah, M., Kinnunen, T.H., Evans, N., Lee, K.A., Yamagishi, J. (2024) ASVspoof 5:
crowdsourced speech data, deepfakes, and adversarial attacks at scale. Proc. The Automatic Speaker Verification Spoofing Countermeasures Workshop (ASVspoof 2024)

| K



| Combining spoofing detection and SV system I TIFIT

Open condition

min min min min

# ID a-DCF t-DCF t-EER # ID a-DCF t-DCF t-EER
eA 1 T45 0.0756 - - 7 0.1797  0.5430 8.39
oA 2 T39 0.1156 0.4584 4,32 8 0.3896 - -
oA 3 T36 0.1203 0.4291 4.54 9 - 04581
oA 4 TO06 0.1295 04372 543 | oA 10 REF 0.6869
oA 5 T29 0.1410 0.4690 5.48 | - 09134
eA 6 T23 0.1492 04075 4.63

- Well prepared attacker is likely to succeed if a target is a
particular VIP (especially for public figures)

- Spoofing detection is always one step behind in the adversarial
game, but it can keep acceptable performance under attack
assumption (~0.7 DCF -> ~0.1 DCF in ASVSpoof 2024)

- Continuous updating of detection system is necessary
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I Summary | i3

e Speaker recognition is still alive, especially for
law-enforcement, and is progressing to enable operating in
more challenging domains

® For Access control systems, the problem of deep fakes is
real and only getting worse

e Deepfake detection is a process of continuous updating,
similar to anti-virus SW

e Technology behind extracting speaker information has
multiple uses -> personalisation, indexing and data mining
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| Thanks N T|FIT
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